New Error Bounds for the Linear Complementarity Problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New improved error bounds for the linear complementarity problem

New local and global error bounds are given for both nonmonotone and monotone linear complementarity problems. Comparisons of various residuals used in these error bounds are given. A possible candidate for a "best" error bound emerges from our comparisons as the sum of two natural residuals.

متن کامل

Computation of Error Bounds for P-matrix Linear Complementarity Problems

We give new error bounds for the linear complementarity problem where the involved matrix is a P-matrix. Computation of rigorous error bounds can be turned into a P-matrix linear interval system. Moreover, for the involved matrix being an H-matrix with positive diagonals, an error bound can be found by solving a linear system of equations, which is sharper than the Mathias-Pang error bound. Pre...

متن کامل

Error bounds for symmetric cone complementarity problems

In this paper, we investigate the issue of error bounds for symmetric cone complementarity problems (SCCPs). In particular, we show that the distance between an arbitrary point in Euclidean Jordan algebra and the solution set of the symmetric cone complementarity problem can be bounded above by some merit functions such as FischerBurmeister merit function, the natural residual function and the ...

متن کامل

A Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem

In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.

متن کامل

New Bounds and Approximations for the Error of Linear Classifiers

In this paper, we derive lower and upper bounds for the probability of error for a linear classifier, where the random vectors representing the underlying classes obey the multivariate normal distribution. The expression of the error is derived in the one-dimensional space, independently of the dimensionality of the original problem. Based on the two bounds, we propose an approximating expressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Operations Research

سال: 1994

ISSN: 0364-765X,1526-5471

DOI: 10.1287/moor.19.4.880